Code Samples for Technical Portfolios¶
Showcase Technical Excellence
Curate and present code samples that demonstrate your technical depth, clean coding practices, and problem-solving abilities for Amazon L6/L7 interviews.
Overview¶
Code samples are crucial evidence of your technical capabilities and engineering craftsmanship. This guide helps you select, organize, and present code that showcases your skills effectively for technical leadership roles.
What Code to Prepare for Portfolio¶
Code Selection Criteria¶
Technical Depth¶
- Complex Problem Solving: Code that demonstrates algorithmic thinking
- System Design: Implementation of architectural patterns
- Performance Optimization: Code showing performance considerations
- Scalability Patterns: Implementation of scalable solutions
Code Quality¶
- Clean Code Principles: Readable, maintainable, and well-structured
- Design Patterns: Proper use of established patterns
- Error Handling: Robust error handling and edge case management
- Testing: Comprehensive test coverage and testing strategies
- Security Best Practices: Input validation, authentication, data protection
Business Impact¶
- Production Code: Real code that solved actual business problems
- Measurable Results: Code that delivered quantifiable improvements
- Cross-functional Impact: Code that enabled other teams or systems
Types of Code to Include¶
1. Algorithm and Data Structure Implementations¶
Purpose: Demonstrate fundamental computer science knowledge
Examples: Custom sorting algorithms, graph traversal, tree operations
2. System Design Implementations¶
Purpose: Show architectural thinking and system design skills
Examples: Cache implementations, rate limiters, load balancers
3. Performance Optimizations¶
Purpose: Demonstrate ability to identify and solve performance bottlenecks
Examples: Database query optimizations, async processing implementations
4. API Design and Implementation¶
Purpose: Show understanding of good API design principles
Examples: RESTful APIs, GraphQL resolvers, RPC implementations
5. Infrastructure as Code¶
Purpose: Demonstrate DevOps and automation skills
Examples: Terraform configurations, Kubernetes manifests, CI/CD pipelines
6. Security Implementations¶
Purpose: Show security-first development mindset
Examples: Authentication systems, data encryption, input validation, rate limiting
Language Selection Strategy¶
Primary Languages for Amazon Interviews¶
1. Python (Highly Recommended)¶
Strengths: - Clean, readable syntax - Excellent for demonstrating algorithms - Strong ecosystem for data processing and ML - Preferred for system administration and automation
Best Use Cases: - Data processing pipelines - Machine learning implementations - System automation scripts - API services with Flask/Django
2. Java (Highly Recommended)¶
Strengths: - Enterprise-grade applications - Strong type system and OOP principles - Excellent for demonstrating design patterns - Common in large-scale distributed systems
Best Use Cases: - Microservices with Spring Boot - Distributed system components - Enterprise application backends - Performance-critical applications
3. Go (Recommended)¶
Strengths: - Modern systems programming language - Excellent concurrency model - Simple, efficient for microservices - Growing adoption in cloud-native applications
Best Use Cases: - Microservices and APIs - Command-line tools - Concurrent/parallel processing - Infrastructure tooling
4. JavaScript/TypeScript (Situational)¶
Strengths: - Full-stack development capability - Async programming model - Large ecosystem and community
Best Use Cases: - Full-stack applications - Real-time applications with Node.js - Frontend applications (if relevant to role)
Language Selection Guidelines¶
For L6 Candidates¶
- Focus on 1-2 languages: Demonstrate depth over breadth
- Choose based on role: Match primary technologies of target team
- Include system language: Python, Java, or Go for backend roles
For L7 Candidates¶
- Show versatility: 2-3 languages showing different paradigms
- Include modern technologies: Go, Rust, or TypeScript for forward-thinking
- Demonstrate architectural thinking: Language choice based on problem domain
Essential Code Samples with Explanations¶
Sample 1: Distributed Rate Limiter (Go)¶
Purpose: Demonstrates understanding of distributed systems, concurrency, and scalability patterns.
Go | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
Key Technical Concepts Demonstrated: - Distributed Systems: Using Redis for shared state across multiple instances - Concurrency: Lua scripts for atomic operations, local mutex for configuration - Algorithm Implementation: Token bucket algorithm with proper refill logic - Error Handling: Comprehensive error checking and meaningful error messages - Performance: Single Redis call using Lua script to minimize latency - Monitoring: Stats interface for observability
Event Sourcing Implementation Highlights: - Event Sourcing: Complete implementation with event store and aggregate reconstruction - Domain-Driven Design: Proper aggregate boundaries and domain events - CQRS: Separation of command and query responsibilities - Concurrency Control: Version-based optimistic locking - Design Patterns: Factory, Repository, and Command patterns - Data Integrity: Validation and consistency checks - Thread Safety: Proper synchronization for concurrent access
Sample 2: Event Sourcing Implementation (Java)¶
Purpose: Shows understanding of complex architectural patterns, data consistency, and domain modeling.
Sample 3: Machine Learning Pipeline (Python)¶
Purpose: Demonstrates data processing, ML implementation, and production-ready code practices.
Python | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
|
Key Technical Concepts Demonstrated: - Machine Learning Engineering: Production-ready ML pipeline with proper abstractions - Data Validation: Input validation and error handling - Feature Engineering: Complex feature extraction with caching - Model Ensemble: Combining multiple algorithms for better performance - Monitoring: Comprehensive metrics and drift detection - Scalability: Batch processing and efficient data structures - Production Patterns: Proper logging, configuration, and error handling
Sample 4: Async API Service (Python)¶
Purpose: Demonstrates modern Python async programming, API design, and production patterns.
Python | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
|
Key Technical Concepts Demonstrated: - Async Programming: Full async/await implementation with proper resource management - API Design: RESTful API with proper HTTP status codes and validation - Database Patterns: Repository pattern with connection pooling and transactions - Caching: Redis caching with proper invalidation strategies - Monitoring: Comprehensive metrics and structured logging - Production Patterns: Health checks, graceful shutdown, middleware - Error Handling: Proper exception handling and user-friendly error messages
Sample 5: Infrastructure as Code (Terraform + Kubernetes)¶
Purpose: Demonstrates infrastructure automation, containerization, and cloud-native deployment patterns.
Terraform | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
|
YAML | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
|
Key Technical Concepts Demonstrated: - Infrastructure as Code: Complete Terraform configuration for AWS resources - Container Orchestration: Kubernetes manifests with best practices - High Availability: Multi-AZ deployment with auto-scaling and pod disruption budgets - Security: Network policies, security contexts, and IAM roles - Monitoring: Health checks, metrics collection, and observability - DevOps Patterns: Rolling updates, resource limits, and configuration management
Clean Code Principles for Interviews¶
1. Readability and Clarity¶
2. Single Responsibility Principle¶
3. Error Handling¶
4. Documentation and Comments¶
GitHub Portfolio Organization¶
Repository Structure¶
README Template¶
Profile README¶
Security Best Practices in Code Examples¶
When presenting code samples for L6/L7 interviews, demonstrating security awareness is crucial. Here are key security practices to highlight:
1. Input Validation and Sanitization¶
2. Authentication and Authorization¶
3. Data Protection and Encryption¶
4. Rate Limiting and DDoS Protection¶
5. SQL Injection Prevention¶
6. API Security Headers¶
7. Secure Configuration Management¶
Security Interview Talking Points¶
When presenting these security practices in interviews:
- Defense in Depth: Explain how multiple security layers work together
- Threat Modeling: Show understanding of potential attack vectors
- Compliance: Mention relevant standards (SOX, PCI DSS, GDPR)
- Security Testing: Discuss security testing practices and tools
- Incident Response: Explain how security incidents are detected and handled
- Performance Impact: Balance security with performance requirements
Your code samples should tell a story about your technical journey, problem-solving approach, and growth as an engineer. Focus on demonstrating not just what you can build, but how you think about technical problems, make trade-offs, deliver business value through code, and maintain security throughout the development lifecycle.