AWS Services Deep Dive for L6/L7 Interviews
π AWS Knowledge: The Hidden Differentiator
2025 Reality Check: AI-First AWS Knowledge
January 2025 Interview: "Deep AWS knowledge combined with generative AI services separated strong candidates. Understanding Bedrock model selection, Nova multimodal capabilities, and vector database optimization was crucial."
L7 Hire: "I discussed implementing Bedrock AgentCore with S3 Vectors integration and it impressed the entire panel. AI/ML service knowledge is now essential."
π AWS Services by Interview Importance
Priority Matrix for L6/L7 (2025 AI-Enhanced Services)
Service |
L6 Importance |
L7 Importance |
Interview Frequency |
2025 Trends |
Amazon Bedrock |
High |
Critical |
85% |
β¬οΈ AI-first architecture |
DynamoDB |
Critical |
Critical |
90% |
Vector extensions |
S3 |
Critical |
Critical |
85% |
S3 Vectors integration |
Lambda |
High |
Critical |
80% |
Event-driven AI |
Amazon Nova Models |
Medium |
High |
70% |
β¬οΈ Multimodal AI |
SageMaker |
High |
Critical |
75% |
MLOps at scale |
EC2/Auto Scaling |
High |
High |
75% |
Trainium/Inferentia |
SQS/SNS |
High |
High |
70% |
AI workflow orchestration |
API Gateway |
Medium |
High |
65% |
AI service integration |
Kinesis |
Medium |
Critical |
60% |
Real-time AI processing |
CloudFront |
Medium |
High |
55% |
Edge AI deployment |
ECS/EKS |
Medium |
Critical |
50% |
Container AI workloads |
π Critical AWS Services Deep Dive (2025 AI-First Focus)
1. Amazon Bedrock - The New Interview Essential
Foundation Model Selection Framework
Python |
---|
| # Bedrock Model Selection for Different Use Cases
"""
Interview Question: You need to implement a customer service chatbot handling 10K concurrent users. How do you select and optimize Bedrock models?
"""
# Model selection based on requirements
def select_bedrock_model(use_case, latency_req, cost_budget, accuracy_req):
if use_case == "customer_service" and latency_req < 100:
return {
"primary": "amazon.nova-lite-v1:0", # Fast, cost-effective
"fallback": "anthropic.claude-3-haiku-20240307-v1:0",
"routing": "intelligent", # Bedrock Intelligent Routing
"caching": True # Enable prompt caching
}
elif use_case == "complex_analysis" and accuracy_req > 0.95:
return {
"primary": "amazon.nova-premier-v1:0", # Highest capability
"optimization": "batch_inference",
"distillation": True # Custom model via Model Distillation
}
elif use_case == "multimodal_content":
return {
"text": "amazon.nova-pro-v1:0",
"image": "amazon.nova-canvas-v1:0",
"video": "amazon.nova-reel-v1:0",
"unified_endpoint": True
}
|
Bedrock Cost Optimization Strategies
Python |
---|
| # Advanced cost optimization techniques
class BedrockOptimizer:
def __init__(self):
self.cache = {}
self.routing_table = {}
def optimize_request(self, prompt, requirements):
# Prompt caching for repeated contexts
cache_key = hash(prompt[:1000]) # Cache context portion
if cache_key in self.cache:
return self.use_cached_context(prompt, cache_key)
# Intelligent model routing
if requirements.get('complexity') < 0.5:
return self.route_to_micro_model(prompt)
elif requirements.get('multimodal'):
return self.route_to_nova_models(prompt)
else:
return self.route_to_claude(prompt)
def implement_guardrails(self, response):
# Use Bedrock Guardrails for safety
return {
"filtered_response": self.apply_content_filters(response),
"bias_score": self.detect_bias(response),
"factuality_check": self.verify_facts(response)
}
|
2. DynamoDB - Enhanced with Vector Capabilities
Core Concepts You Must Know
Python |
---|
| # DynamoDB with Vector Search Integration (2025)
"""
Interview Question: Your AI application needs both traditional data access and vector similarity search. How do you architect this with DynamoDB and new AWS vector services?
"""
# Traditional hot partition fix
partition_key = f"{user_id}#{hash(user_id) % 10}"
# New: Vector-enhanced architecture
class VectorEnhancedDynamoDB:
def __init__(self):
self.dynamo_client = boto3.client('dynamodb')
self.s3_vectors = boto3.client('s3')
self.bedrock = boto3.client('bedrock-runtime')
def store_with_embeddings(self, item_data):
# Generate embeddings using Bedrock
embedding = self.bedrock.invoke_model(
modelId='amazon.titan-embed-text-v1',
body=json.dumps({"inputText": item_data['content']})
)
# Store traditional data in DynamoDB
dynamo_item = {
'PK': {'S': f"USER#{item_data['user_id']}#{hash(item_data['user_id']) % 10}"},
'SK': {'S': f"ITEM#{item_data['timestamp']}"},
'content': {'S': item_data['content']},
'vector_id': {'S': item_data['vector_id']}
}
# Store vectors in S3 Vectors (90% cost reduction)
self.s3_vectors.put_object(
Bucket='vector-store',
Key=f"vectors/{item_data['vector_id']}",
Body=embedding['embedding']
)
return self.dynamo_client.put_item(
TableName='enhanced-table',
Item=dynamo_item
)
def similarity_search_with_metadata(self, query_vector, limit=10):
# Use S3 Vectors for similarity search
similar_vectors = self.s3_vectors.query_vectors(
Bucket='vector-store',
QueryVector=query_vector,
TopK=limit
)
# Fetch metadata from DynamoDB
items = []
for vector_result in similar_vectors:
metadata = self.dynamo_client.get_item(
TableName='enhanced-table',
Key={'vector_id': {'S': vector_result['id']}}
)
items.append({
'similarity': vector_result['score'],
'content': metadata['Item']['content']['S'],
'metadata': metadata['Item']
})
return items
|
DynamoDB Design Patterns
Single Table Design (L7 must-know):
Python |
---|
| # Instead of multiple tables, use one table with different patterns
table_design = {
"PK": "Entity#ID",
"SK": "Metadata|Timestamp|RelatedEntity",
# User entity
"PK": "USER#123",
"SK": "METADATA",
# User's orders
"PK": "USER#123",
"SK": "ORDER#2024-01-15#456",
# Order details
"PK": "ORDER#456",
"SK": "METADATA",
# Access patterns:
# 1. Get user: PK=USER#123, SK=METADATA
# 2. Get user orders: PK=USER#123, SK begins_with ORDER
# 3. Get order: PK=ORDER#456, SK=METADATA
}
|
Interview Scenarios & Solutions
Scenario 1: "Design a shopping cart that handles Black Friday traffic"
Python |
---|
| # Solution approach
shopping_cart_design = {
"table": "ShoppingCarts",
"partition_key": "SessionID",
"sort_key": "ItemID",
"capacity": {
"normal": {"RCU": 1000, "WCU": 1000},
"black_friday": {"RCU": 40000, "WCU": 40000}
},
"optimizations": [
"Enable auto-scaling with target 70%",
"Use DynamoDB Accelerator (DAX) for reads",
"Implement write sharding for hot items",
"Use Global Secondary Index for user lookups",
"Enable point-in-time recovery"
],
"hot_partition_mitigation": [
"Adaptive capacity (automatic)",
"Write sharding with random suffix",
"Burst capacity utilization"
]
}
|
Scenario 2: "Handle 1 million writes per second"
Python |
---|
| # Calculation for L6/L7 discussion
writes_per_second = 1_000_000
write_capacity_unit = 1 # 1 KB per write
partition_throughput = 1000 # WCU per partition
required_partitions = writes_per_second / partition_throughput # 1000
monthly_cost = required_partitions * 1000 * 0.00065 * 730 # ~$475K
# Optimization discussion
optimizations = {
"batching": "Use BatchWriteItem (25 items per request)",
"compression": "Compress data before writing",
"archival": "Move old data to S3",
"aggregation": "Aggregate writes in Kinesis first"
}
|
2. S3 - Understanding at Scale
Consistency Model (Changed in 2020)
Python |
---|
| # Pre-2020: Eventual consistency for overwrites
# Post-2020: Strong read-after-write consistency
# Interview talking points
s3_consistency = {
"read_after_write": "Strong consistency (since Dec 2020)",
"list_after_write": "Strong consistency",
"list_after_delete": "Strong consistency",
"implications": [
"No need for sleep/retry in tests",
"Can immediately read after write",
"Simplifies application logic"
]
}
|
S3 Request Patterns & Optimization
Python |
---|
| # Request rate limits (2024)
s3_limits = {
"PUT/COPY/POST/DELETE": 3500, # requests/sec per prefix
"GET/HEAD": 5500, # requests/sec per prefix
"scaling": "Automatic - no prefix randomization needed"
}
# Multipart upload optimization
def optimize_large_file_upload(file_size_gb):
if file_size_gb < 0.1: # 100 MB
return "Single PUT"
elif file_size_gb < 5: # 5 GB
return "Optional multipart"
else: # > 5 GB
return "Mandatory multipart"
# Optimal part size
part_size_mb = min(100, max(5, file_size_gb * 1000 / 10000))
return f"Use {part_size_mb} MB parts"
|
S3 Storage Classes Strategy
Python |
---|
| # Cost optimization for L7 discussions
storage_strategy = {
"S3 Standard": {
"use_case": "Frequently accessed data",
"cost_per_gb": 0.023,
"retrieval": "Free"
},
"S3 Standard-IA": {
"use_case": "Monthly access",
"cost_per_gb": 0.0125,
"retrieval": "$0.01/GB"
},
"S3 Intelligent-Tiering": {
"use_case": "Unknown access patterns",
"cost_per_gb": 0.023, # Auto-moves between tiers
"retrieval": "Free"
},
"S3 Glacier Instant": {
"use_case": "Quarterly access",
"cost_per_gb": 0.004,
"retrieval": "$0.03/GB"
},
"S3 Glacier Flexible": {
"use_case": "Yearly access",
"cost_per_gb": 0.0036,
"retrieval": "1-12 hours"
}
}
# Lifecycle policy example
lifecycle_policy = {
"rules": [
{"days": 0, "storage_class": "STANDARD"},
{"days": 30, "storage_class": "STANDARD_IA"},
{"days": 90, "storage_class": "GLACIER"},
{"days": 365, "storage_class": "DEEP_ARCHIVE"},
{"days": 2555, "action": "DELETE"} # 7 years
]
}
|
3. Lambda - Serverless at Scale
Cold Start Optimization
Python |
---|
| # Cold start mitigation strategies
cold_start_solutions = {
"provisioned_concurrency": {
"cost": "$0.000004 per GB-second",
"use_case": "Predictable traffic",
"warmup_time": "< 100ms"
},
"container_reuse": {
"technique": "Keep connections outside handler",
"benefit": "Reuse across invocations"
},
"smaller_packages": {
"technique": "Minimize dependencies",
"target": "< 50 MB zipped"
},
"language_choice": {
"fastest": ["Rust", "Go", "Node.js"],
"slowest": ["Java", "C#"]
}
}
# Connection pooling pattern
import boto3
# Outside handler - reused across invocations
dynamodb = boto3.resource('dynamodb')
table = dynamodb.Table('my-table')
def lambda_handler(event, context):
# Use pre-initialized resources
return table.get_item(Key={'id': event['id']})
|
Lambda Limits & Workarounds
Python |
---|
| lambda_limits_2024 = {
"timeout": {"limit": "15 minutes", "workaround": "Step Functions"},
"memory": {"limit": "10 GB", "workaround": "ECS Fargate"},
"storage": {"limit": "512 MB /tmp", "workaround": "EFS mount"},
"payload": {"limit": "6 MB sync", "workaround": "S3 + presigned URL"},
"concurrent": {"limit": "1000 default", "workaround": "Request increase"}
}
|
4. API Gateway - The Front Door
Request Flow Architecture
Python |
---|
| # API Gateway patterns for L6 interviews
api_gateway_patterns = {
"rest_api": {
"use_case": "RESTful services",
"features": ["Request validation", "SDK generation"],
"limits": {"rate": 10000, "burst": 5000}
},
"http_api": {
"use_case": "High performance, low cost",
"features": ["JWT authorization", "OIDC"],
"cost": "70% cheaper than REST"
},
"websocket_api": {
"use_case": "Real-time bidirectional",
"features": ["Connection management", "Route selection"],
"limits": {"connections": 500000, "messages": "No limit"}
}
}
# Rate limiting implementation
rate_limit_config = {
"method": "Token bucket",
"rate": 1000, # requests per second
"burst": 2000, # burst capacity
"per_api_key": True,
"response_429": {
"message": "Rate limit exceeded",
"retry_after": 1
}
}
|
5. Kinesis - Stream Processing
Kinesis vs SQS vs SNS Decision Tree
Python |
---|
| def choose_messaging_service(requirements):
if requirements.get("ordered_processing"):
if requirements.get("replay_capability"):
return "Kinesis Data Streams"
else:
return "SQS FIFO"
elif requirements.get("fanout_pattern"):
return "SNS + SQS"
elif requirements.get("simple_queue"):
return "SQS Standard"
elif requirements.get("real_time_analytics"):
return "Kinesis Data Analytics"
else:
return "EventBridge"
# Shard calculation for interviews
def calculate_kinesis_shards(
records_per_second=1000,
avg_record_size_kb=1,
read_applications=3
):
# Write capacity: 1000 records/sec OR 1 MB/sec per shard
write_shards = max(
records_per_second / 1000,
(records_per_second * avg_record_size_kb) / 1000
)
# Read capacity: 2 MB/sec per shard per application
read_requirement = (records_per_second * avg_record_size_kb * read_applications) / 1000
read_shards = read_requirement / 2
return max(write_shards, read_shards)
|
6. CloudFront - CDN Architecture
Cache Optimization Strategies
Python |
---|
| cloudfront_caching = {
"cache_behaviors": [
{
"path": "/api/*",
"ttl": 0, # No caching for APIs
"forward": ["headers", "query_strings", "cookies"]
},
{
"path": "/static/*",
"ttl": 86400, # 1 day for static assets
"compress": True
},
{
"path": "/images/*",
"ttl": 604800, # 1 week for images
"compress": False
}
],
"invalidation_strategy": {
"cost": "$0.005 per path",
"alternative": "Versioned URLs (/v2/style.css)"
},
"origin_shield": {
"use_case": "Reduce origin load",
"benefit": "Extra caching layer",
"cost": "$0.001 per 10,000 requests"
}
}
|
ποΈ Architecture Patterns Using AWS Services
Pattern 1: Event-Driven Microservices
graph LR
API[API Gateway] --> Lambda1[Order Lambda]
Lambda1 --> SNS[SNS Topic]
SNS --> SQS1[Inventory Queue]
SNS --> SQS2[Payment Queue]
SNS --> SQS3[Shipping Queue]
SQS1 --> Lambda2[Inventory Lambda]
SQS2 --> Lambda3[Payment Lambda]
SQS3 --> Lambda4[Shipping Lambda]
Lambda2 --> DDB1[(DynamoDB)]
Lambda3 --> DDB2[(DynamoDB)]
Lambda4 --> DDB3[(DynamoDB)]
Pattern 2: Real-Time Analytics Pipeline
graph LR
Apps[Applications] --> KDS[Kinesis Data Streams]
KDS --> KDA[Kinesis Data Analytics]
KDS --> KDF[Kinesis Data Firehose]
KDA --> Lambda[Alert Lambda]
KDF --> S3[S3 Data Lake]
S3 --> Athena[Athena]
S3 --> EMR[EMR]
Lambda --> SNS[SNS Alerts]
π° Cost Optimization Discussions
L7 Level Cost Analysis
Python |
---|
| # Example: Video streaming platform cost optimization
monthly_costs = {
"current": {
"CloudFront": 50000, # TB transfer
"S3": 30000, # Storage + requests
"EC2": 40000, # Origin servers
"DynamoDB": 20000, # Metadata
"Total": 140000
},
"optimized": {
"CloudFront": 35000, # Origin Shield + better caching
"S3": 20000, # Intelligent Tiering
"EC2": 20000, # Spot instances + auto-scaling
"DynamoDB": 10000, # On-demand + DAX
"Total": 85000 # 40% reduction
},
"techniques": [
"S3 Intelligent-Tiering for automatic cost optimization",
"CloudFront Origin Shield to reduce origin hits by 60%",
"DynamoDB on-demand for variable workloads",
"EC2 Spot Fleet for 70% compute savings",
"Reserved Capacity for predictable workloads"
]
}
|
π― Interview Scenarios with AWS Services
Scenario 1: "Design a Global File Sync Service"
Python |
---|
| solution = {
"requirements": {
"users": "100M globally",
"files": "10 files per user average",
"size": "100 MB average file size",
"sync": "Real-time across devices"
},
"architecture": {
"storage": "S3 with Cross-Region Replication",
"cdn": "CloudFront for global distribution",
"metadata": "DynamoDB Global Tables",
"sync": "AppSync with GraphQL subscriptions",
"compute": "Lambda for file processing",
"auth": "Cognito for user management"
},
"optimizations": {
"deduplication": "Content-based hashing",
"compression": "Client-side before upload",
"chunking": "Multipart upload for large files",
"caching": "CloudFront + ElastiCache"
}
}
|
Scenario 2: "Handle 1 Billion Events per Day"
Python |
---|
| solution = {
"ingestion": "Kinesis Data Streams (1000 shards)",
"processing": "Kinesis Analytics for real-time",
"storage": "S3 via Kinesis Firehose",
"query": "Athena for ad-hoc analysis",
"monitoring": "CloudWatch + X-Ray",
"calculations": {
"events_per_second": 1_000_000_000 / 86400, # ~11,574
"kinesis_shards": 12, # With headroom
"monthly_cost": 12 * 0.015 * 24 * 30 # ~$130
}
}
|
π Must-Know AWS Concepts for Interviews
Networking & Security
Python |
---|
| networking_concepts = {
"VPC": {
"CIDR": "10.0.0.0/16 typical",
"Subnets": "Public (IGW) vs Private (NAT)",
"Peering": "Cross-VPC communication",
"Endpoints": "Private connection to AWS services"
},
"Security": {
"Security Groups": "Instance-level firewall (stateful)",
"NACLs": "Subnet-level firewall (stateless)",
"WAF": "Application-layer protection",
"Shield": "DDoS protection"
},
"Load Balancing": {
"ALB": "Layer 7, HTTP/HTTPS",
"NLB": "Layer 4, TCP/UDP, ultra-low latency",
"CLB": "Legacy, avoid in new designs"
}
}
|
Disaster Recovery Patterns
Python |
---|
| dr_patterns = {
"Backup & Restore": {
"RTO": "Hours",
"RPO": "Hours",
"Cost": "$",
"Use": "Non-critical systems"
},
"Pilot Light": {
"RTO": "Minutes to hours",
"RPO": "Minutes",
"Cost": "$$",
"Use": "Critical systems with some downtime tolerance"
},
"Warm Standby": {
"RTO": "Minutes",
"RPO": "Seconds",
"Cost": "$$$",
"Use": "Business-critical systems"
},
"Multi-Site Active-Active": {
"RTO": "Zero",
"RPO": "Zero",
"Cost": "$$$$",
"Use": "Mission-critical, no downtime"
}
}
|
2025 AWS Architecture Patterns for L6/L7 Interviews
Event-Driven AI Architecture
Python |
---|
| # Modern event-driven AI system design
"""
Interview Question: Design a real-time AI system that processes user actions, generates personalized recommendations, and adapts to user feedback continuously.
"""
class EventDrivenAIArchitecture:
def __init__(self):
self.services = {
'event_ingestion': 'Amazon Kinesis Data Streams',
'real_time_processing': 'AWS Lambda + Bedrock',
'vector_storage': 'S3 Vectors',
'feature_store': 'SageMaker Feature Store',
'model_endpoints': 'SageMaker Real-time Inference',
'workflow_orchestration': 'AWS Step Functions'
}
def design_architecture(self):
return {
'ingestion_layer': {
'kinesis_streams': {
'user_events': '10K events/sec',
'feedback_events': '5K events/sec',
'system_events': '2K events/sec'
},
'api_gateway': {
'websocket_connections': '100K concurrent',
'rest_apis': '50K RPS'
}
},
'processing_layer': {
'lambda_functions': {
'event_processor': 'Process user events',
'recommendation_generator': 'Generate real-time recs',
'feedback_processor': 'Update user models',
'a_b_test_manager': 'Manage experiments'
},
'bedrock_integration': {
'models': ['amazon.nova-pro-v1:0', 'anthropic.claude-3-sonnet'],
'guardrails': 'Content safety and bias prevention',
'cost_optimization': 'Intelligent routing and caching'
}
},
'storage_layer': {
's3_vectors': {
'user_embeddings': '100M vectors',
'item_embeddings': '10M vectors',
'cost_savings': '90% vs traditional vector DB'
},
'dynamodb': {
'user_profiles': 'Real-time access patterns',
'recommendation_cache': 'Sub-millisecond lookups'
}
}
}
|
Critical 2025 Interview Topics: AWS Service Integration
Question 1: Comprehensive AI Platform Design
"Design an AI platform using Bedrock, S3 Vectors, and SageMaker that serves 10M+ users with sub-100ms latency while maintaining 99.99% uptime and controlling costs."
Strong Answer Framework:
1. Architecture Overview: Multi-region deployment with intelligent routing
2. Bedrock Integration: Model selection, prompt caching, intelligent routing
3. S3 Vectors: Cost-optimized vector storage and retrieval
4. SageMaker: Real-time endpoints with auto-scaling
5. Cost Optimization: Reserved capacity, spot instances, efficient data transfer
6. Reliability: Circuit breakers, graceful degradation, monitoring
Question 2: Real-time AI with Event-Driven Architecture
"Build a real-time recommendation system that processes user events, updates models continuously, and personalizes content in real-time using AWS services."
Strong Answer Framework:
1. Event Ingestion: Kinesis Data Streams for high-throughput event processing
2. Real-time Processing: Lambda functions with Bedrock integration
3. Feature Store: SageMaker Feature Store for real-time feature serving
4. Vector Search: S3 Vectors for similarity-based recommendations
5. Caching: ElastiCache for sub-millisecond response times
6. Monitoring: CloudWatch custom metrics and real-time dashboards
Advanced 2025 AWS Services Deep Dive
Amazon Bedrock Enterprise Integration
Python |
---|
| # Production-ready Bedrock implementation
class ProductionBedrockSystem:
def __init__(self):
self.cost_optimization = {
'prompt_caching': 'Reduce repeated context costs',
'intelligent_routing': 'Auto-select optimal model',
'batch_processing': 'Process multiple requests efficiently',
'model_distillation': 'Create custom optimized models'
}
def implement_advanced_patterns(self):
return {
'multi_model_orchestration': 'Route requests to best model',
'fallback_mechanisms': 'Graceful degradation on failures',
'cost_monitoring': 'Real-time spend tracking and alerts',
'performance_optimization': 'Latency and throughput monitoring',
'guardrails_integration': '88% harmful content blocking',
'compliance_features': 'EU AI Act and ESG reporting'
}
|
S3 Vectors Architecture Patterns
Python |
---|
| # S3 Vectors for enterprise vector search
class S3VectorArchitecture:
def __init__(self):
self.cost_benefits = {
'storage_savings': '90% vs traditional vector databases',
'operational_overhead': 'Minimal - managed service',
'integration': 'Native with Bedrock Knowledge Bases',
'scaling': 'Automatic with S3 infrastructure'
}
def design_hybrid_search(self):
return {
'vector_search': 'S3 Vectors for semantic similarity',
'metadata_filtering': 'DynamoDB for structured queries',
'full_text_search': 'OpenSearch for keyword matching',
'unified_api': 'API Gateway orchestrating all searches'
}
|
Latest AWS AI Services Integration (2025)
Python |
---|
| # Comprehensive AWS AI services architecture
aws_ai_services_2025 = {
'foundation_models': {
'bedrock': {
'models': ['Amazon Nova (text, image, video)', 'Claude 4', 'Luma Ray 2'],
'features': ['AgentCore', 'Guardrails', 'Model Distillation'],
'cost_optimization': ['Prompt caching', 'Intelligent routing']
}
},
'machine_learning': {
'sagemaker': {
'new_features': ['Unified Studio', 'HyperPod 40% improvement'],
'training': ['Trainium3 4x performance', 'Distributed training'],
'inference': ['Serverless endpoints', 'Multi-model endpoints']
}
},
'data_services': {
's3_vectors': {
'capabilities': ['Vector similarity search', '90% cost reduction'],
'integration': ['Bedrock', 'OpenSearch', 'SageMaker']
}
},
'ai_infrastructure': {
'trainium3': {
'performance': '4x improvement over Trn2',
'availability': 'Late 2025',
'use_cases': ['Large model training', 'Custom architectures']
}
}
}
|
β
AWS Knowledge Checklist for Interviews
L6 Minimum Requirements
L7 Additional Requirements
π Study Resources
AWS Documentation
re:Invent Videos
- "Amazon DynamoDB Deep Dive: Advanced Design Patterns"
- "Amazon S3 Best Practices"
- "Optimizing Lambda Performance"
Whitepapers
- Well-Architected Framework
- DynamoDB Whitepaper
- S3 Request Rate Performance
Interview Pro Tip
Don't just memorize servicesβunderstand the trade-offs. Interviewers want to see you can make informed decisions about when to use each service and why. Always connect technical choices to business impact.
Next: Well-Architected Framework β